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Abstract I argue that Einstein’s creation of both special and general relativity 
instantiates Reichenbach’s conception of the relativized a priori. I do this by show-
ing how the original Kantian conception actually contributes to the development 
of Einstein’s theories through the intervening philosophical and scientific work of 
Helmholtz, Mach, and Poincaré.

Kant’s original version of transcendental philosophy took both Euclidean geometry 
and the Newtonian laws of motion to be synthetic a priori constitutive principles – which, 
from Kant’s point of view, function as necessary presuppositions for applying our 
fundamental concepts of space, time, matter, and motion to our sensible experience 
of the natural world.1 Although Kant had very good reasons to view the principles 
in question as having such a constitutively a priori role, we now know, in the wake 
of Einstein’s work, that they are not in fact a priori in the stronger sense of being 
fixed necessary conditions for all human experience in general, eternally valid 
once and for all. And it is for precisely this reason that Kant’s original version of 
transcendental philosophy must now be radically reconceived.

It was Hans Reichenbach, in Relativitätstheorie und Erkenntnis Apriori (1920), 
who first proposed the idea of relativizing Kantian constitutively a priori principles 
of geometry and mechanics. Such principles still function, throughout the development 
from Newton to Einstein, as necessary presuppositions for applying our (changing) 
conceptions of space, time, and motion to our sensible experience, but they are no 
longer eternally valid once and for all. Instead of global necessary conditions for all 
human experience in general, we have merely local necessary conditions for the 
empirical application of a particular mathematical–physical theory at a given time and 
in a given historical context. For example, while Euclidean geometry and the 

1 For details on Kant’s understanding of Euclidean geometry and the fundamental principles of 
Newtonian mechanics see Friedman (1992).
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Newtonian laws of motion are indeed necessary conditions for giving empirical 
meaning to the Newtonian theory of universal gravitation, the situation in Einstein’s 
general theory relativity is quite different. The crucial mediating role between 
abstract mathematical theory and concrete sensible experience is now played by the 
light principle and the principle of equivalence, which together insure that Einstein’s 
revolutionary new description of gravitation by a four-dimensional geometry of 
variable curvature in fact says something about concrete empirical phenomena: 
namely, the behavior of light and gravitationally interacting bodies.

In my recent book, Dynamics of Reason (2001), I have taken up, and further devel-
oped, Reichenbach’s idea. But my implementation of this idea of relativized constitutively 
a priori principles (of geometry and mechanics) essentially depends on an historical argu-
ment describing the developmental process by which the transition from Newton to 
Einstein actually took place, as mediated, in my view, by the parallel developments in 
scientific philosophy involving, especially, Hermann von Helmholtz, Ernst Mach, and 
Henri Poincaré. However, since this argument depends on the concrete details of the actual 
historical process in question, it would therefore appear to be entirely contingent. How, 
then, can it possibly be comprehended within a properly transcendental philosophy? 
Indeed, once we have given up on Kant’s original ambition to delineate in advance the a 
priori structure of all possible scientific theories, it might easily seem that a properly tran-
scendental argument is impossible. We have no way of anticipating a priori the specific 
constitutive principles of future theories, and so all we can do, it appears, is wait for the 
historical process to show us what emerges a posteriori as a matter of fact. So how, more 
generally, can we develop a philosophical understanding of the evolution of modern sci-
ence that is at once genuinely historical and properly transcendental?2

Let us begin by asking how Kant’s original transcendental method is supposed to 
explain the sense in which certain fundamental principles of geometry and mechanics 
are, in fact, both a priori and necessary. This method, of course, appeals to Kant’s 
conception of the two rational faculties of sensibility and understanding. The answer 
to the question “how is pure mathematics possible?” appeals to the necessary structure 
of our pure sensibility, as articulated in the Transcendental Aesthetic of the Critique 
of Pure Reason; the answer to the question “how is pure natural science possible?” 
appeals to the necessary structure of our pure understanding, as articulated in the 
Transcendental Analytic. Yet there is an obvious objection to this procedure: how 
can such proposed transcendental explanations inherit the (assumed) a priori necessity 
of the sciences whose possibility they purport to explain unless we can also 
somehow establish that they are the unique such explanations?3 From our present 
point of view, for example, it does not appear that Kant’s explanation of the possibility 

2 I am especially indebted to Charles Parsons for raising this problem of historical contingency and 
stimulating me to take it very seriously.
3 Kant often makes such claims to explanatory uniqueness, for example, in the Transcendental 
Exposition of the Concept of Space added to the second [“B”] edition (B 41): “Therefore, only 
our explanation makes the possibility of geometry as an a priori synthetic cognition comprehensible. 
Any mode of explanation that does not achieve this, even if it appeared to be similar to ours, can 
be most securely distinguished from ours by this criterion.” I am indebted to Dagfinn Føllesdal for 
emphasizing to me the importance of the problem of uniqueness in this connection.
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of pure mathematics is uniquely singled out in any way; on the contrary, our greatly 
expanded conception of purely logical or analytic truth suggests that an appeal to 
the faculty of pure sensibility may, after all, be entirely superfluous. Indeed, from 
the point of view of the anti-psychological approach to such questions that dominated 
much of twentieth-century analytic philosophy, it appears that all consideration of 
our subjective cognitive faculties is similarly explanatorily superfluous.

In Kant’s own intellectual context, however, explanations of scientific knowledge 
in terms of our cognitive faculties were the norm – for empiricists, rationalists, and 
(of course) Aristotelians. Everyone agreed, in addition, that the relevant faculties to 
consider were the senses and the intellect; what was then controversial was the 
precise nature and relative importance of the two. Empiricist views, which denied 
the existence of the pure intellect or its importance for scientific knowledge, were, 
for Kant, simply out of the question, since they make a priori rational knowledge 
incomprehensible.4 Moreover, the conception of the pure intellect that was most 
salient for Kant was that of Leibniz, where the fundamental structure of this faculty 
is delineated, in effect, by the logical forms of traditional Aristotelian syllogistic. 
But this conception of the pure intellect, Kant rightly saw, is entirely inadequate for 
representing, say, the assumed infinite extendibility and divisibility of geometrical 
space, which had recently proven itself to be both indispensable and extremely fruitful 
in Newtonian mathematical physics.5 Nevertheless, Newton’s own conception of space 
as the divine sensorium was also entirely unacceptable on theological and metaphysical 
grounds, and so the only live alternative left to Kant was the one he actually came up 
with: space is a pure form of our sensibility (as opposed to the divine sensibility), 
wherein both (infinitely iterable) geometrical construction and the perception of 
spatial objects in nature (like the heavenly bodies) then become first possible.6

Kant’s answers to the questions “how is pure mathematics possible?” and “how 
is pure natural science possible” therefore operate against the background of an 

4 Thus, in considering the questions “how is pure mathematics possible?” and “how is pure natu-
ral science possible?” in section VI of the Introduction to the second edition of the Critique, Kant 
simply takes it for granted that the actual existence of these sciences puts the existence of syn-
thetic a priori knowledge entirely beyond all doubt. In particular, in considering Hume’s skepti-
cism concerning the necessity of the causal relation – which then leads to skepticism about the 
possibility of any a priori metaphysics – Kant blames this result on Hume’s insufficiently general 
understanding of the problem (B 20): “[H]ume would never have arrived at this assertion, which 
destroys all pure philosophy, if he had kept our problem before his eyes in its [full] generality; 
for he would then have seen that, according to his argument, there could also be no pure 
mathematics (for it certainly contains synthetic a priori propositions), and his good sense would 
then surely have saved him from this assertion.” Similarly, while considering (in section 14 of 
the second edition) the circumstance that neither Locke nor Hume posed the problem of the 
transcendental deduction, and instead attempted a psychological or empirical derivation of 
the pure concepts of the understanding, Kant concludes (B 127–128): “But the empirical derivation 
which both fell upon cannot be reconciled with the actuality of the a priori scientific cognition 
that we have—namely of pure mathematics and universal natural science—and is thus refuted 
by this fact [Faktum].”
5 Again, see Friedman (1992, chapters 1 and 2) for details.
6 See my “Newton and Kant on Absolute Space: From Theology to Transcendental Philosophy” 
(this volume) for details.
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existing set of intellectual resources in a particular historical context. Geometry, for 
Kant, is limited to the classical system of Euclid; the pure understanding or pure 
intellect is delimited by the logical forms of Aristotle; the available conceptions of 
space and time are exhausted by the Leibnizean and Newtonian alternatives; and so on. 
Kant’s theory of our faculties of sensibility and understanding can only be understood 
against the background of precisely these resources – mathematical, logical, meta-
physical, and theological – as Kant delicately navigates within them and eventually 
radically transforms them. The revolutionary and completely unexpected result, that 
space and time are pure forms of our (human) faculty of sensibility and that, considered 
independently of sensibility, our faculty of understanding yields no (theoretical) 
cognition at all, then emerges as the practically unique solution to the problem set 
by the existing intellectual resources: it is the only available conception of our rational 
faculties that does simultaneous justice to both Newtonian mathematical physics 
and Leibnizean (as opposed to Newtonian) natural theology and metaphysics.

It is of course entirely contingent that Kant operated against the background of 
precisely these intellectual resources, just as it is entirely contingent that Kant was 
born in 1724 and died in 1804. Given these resources, however, and given the problems 
with which Kant was faced, the solution he came up with is not contingent. On the 
contrary, the intellectual situation in which he found himself had a definite “inner logic” 
–mathematical, logical, metaphysical, and theological – which allowed him to trian-
gulate, as it were, on a practically unique (and in this sense necessary) solution.

Beginning with this understanding of Kant’s transcendental method and its associated 
rational necessity, we can then see a way forward for extending this method to 
post-Kantian developments in both the mathematical exact sciences and transcendental 
philosophy. We can trace out how the “inner logic” of the relevant intellectual situation 
evolves and changes after Kant in response to both new developments in the 
mathematical exact sciences themselves and the manifold and intricate ways in 
which post-Kantian scientific philosophers attempted to reconfigure Kant’s original 
version of transcendental philosophy in light of these developments. That each of these 
successive new intellectual situations has its own “inner logic” implies that the 
enterprise does not collapse into total contingency; that, in addition, they successively 
evolve out of, and in light of, Kant’s original system suggests that it may still count as 
transcendental philosophy. In my reconceived version of transcendental philosophy, 
therefore, integrated intellectual history of both the exact sciences and scientific 
philosophy takes over the role of Kant’s original transcendental faculty psychology.

Hermann von Helmholtz’s neo-Kantian scientific epistemology, for example, 
had deep roots in Kant’s original conception. In particular, Helmholtz developed a 
distinctive conception of space as a “subjective” and “necessary form of our external 
intuition” in the sense of Kant; and, while this conception was certainly developed 
within Helmholtz’s empirical program in sensory psychology and psycho-physics, 
it nevertheless retained important “transcendental” elements.7 More specifically, 

7 For Helmholtz’s characteristic combination of empirical (or “naturalistic”) and transcendental (or 
“normative”) elements see Hatfield (1990). For my reading of Helmholtz’s conception of space 
and geometry see Friedman (1997, 2000).
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space is “transcendental,” for Helmholtz, in so far as the principle of free mobility 
(which allows arbitrary continuous motions of rigid bodies) is a necessary condition 
for the possibility of spatial measurement – and, indeed, for the very existence of 
space and spatial objects. Moreover, the condition of free mobility represents a natural 
generalization of Kant’s original (Euclidean) conception of geometrical construction, 
in the sense that Euclidean constructions with straight-edge and compass, carried 
out within Kant’s form of spatial intuition, are generated by the group of specifically 
Euclidean rigid motions (translations and rotations). The essential point, however, 
is that free mobility also holds for the classical non-Euclidean geometries of constant 
curvature (hyperbolic and elliptic), and so it is no longer a “transcendental” and 
“necessary” condition of our spatial intuition, for Helmholtz, that the space constructed 
from our perception of bodily motion obeys the specific laws of Euclidean geometry. 
Nevertheless, Helmholtz’s generalization of the Kantian conception of spatial intuition 
is, in an important sense, the minimal (and in this sense unique) such generalization 
consistent with the nineteenth-century discovery of non-Euclidean geometries.8

The great French mathematician Henri Poincaré then transformed Helmholtz’s 
conception in turn. In particular, Poincaré’s use of the principle of free mobility 
(which plays a central role in his philosophy of geometry) is explicitly framed by a 
hierarchical conception of the mathematical sciences, beginning with arithmetic and 
proceeding through analysis, geometry, mechanics, and empirical physics; and, for 
Poincaré, it follows that one should thereby explain the application of pure mathematics 
to our perceptual experience precisely in terms of the hierarchy in question.9

Poincaré, to begin with, views pure arithmetic as a synthetic a priori science 
involving the ineliminable use of an essentially non-logical principle of reasoning 
by recurrence or mathematical induction. This principle, for Poincaré, rests on the 
fundamental intuition of indefinitely repeatable succession or iteration – a concep-
tion which is very close indeed to Kant’s original philosophy of arithmetic.10 At the 
next lower level of the hierarchy is analysis or the theory of mathematical magni-
tude (also explained with an eye towards its intuitive meaning and perceptual appli-
cation); and, at a crucial intermediate level, below the sciences of arithmetic and 
analysis but above the sciences of mechanics and empirical physics, is the science 
of geometry. In particular, whereas the mathematical structure and empirical 

 8 Bernhard Riemann’s general theory of manifolds includes spaces of variable curvature not sat-
isfying the condition of free mobility, and it is for precisely this reason that Hermann Weyl later 
attempted to generalize Helmholtz’s approach to comprehend the (four-dimensional) (semi-)
Riemannian geometries of variable curvature used in Einstein’s general theory of relativity. 
Moreover, as I explain in Friedman (2000, pp. 209–211), Weyl, too, conceived his work as a 
generalization of Kant’s original theory of space as an (a priori) “form of experience.” The important 
point here, however, is that Helmholtz is “closer” to Kant’s original theory (in so far as his 
generalization preserves the possibility of geometrical constructions analogous to Euclid’s), 
whereas Weyl’s work arises only as a further generalization, in turn, of Helmholtz’s.
 9 This hierarchical conception is developed especially clearly in La Science et l’Hypothèse (1902). 
For details see Friedman (1999, chapter 4, 2000).
10 For Poincaré’s philosophy of arithmetic, in particular, see Folina (1992).
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 meaning of the science of geometry presupposes the existence of the two preceding 
sciences, it is presupposed, in turn, by the two succeeding ones.

This hierarchical conception of the mathematical sciences underlies Poincaré’s 
fundamental disagreement with Helmholtz. For Helmholtz, as we have seen, the 
principle of free mobility expresses the necessary structure of our form of external 
intuition, and, following Kant, Helmholtz views all empirical investigation as neces-
sarily taking place within this already given form. Helmholtz’s conception is Kantian, 
that is, in so far as space has a “necessary form” expressed in the condition of free 
mobility, but it is also empiricist in so far as which of the three possible geometries 
of constant curvature obtains is then determined by experience. For Poincaré, by 
contrast, although the principle of free mobility is still fundamental, our actual per-
ceptual experience of bodily “displacements” arising in accordance with this princi-
ple is far too imprecise and indefinite to yield the empirical determination of a 
specific mathematical geometry: our only option, at this point, is to stipulate 
Euclidean geometry by convention, as the simplest and most convenient idealization 
of our actual perceptual experience. In particular, experiments with putatively rigid 
bodies, for Poincaré, involve essentially physical processes at the level of mechanics 
and experimental physics, and these sciences, in turn, presuppose that the science of 
geometry is already firmly in place. In the context of Poincaré’s hierarchy, therefore, 
the principle of free mobility expresses our necessary freedom to choose – by a “con-
vention or definition in disguise” – which of the three classical geometries of constant 
curvature is the most suitable idealization of physical space.

One of the most important applications of Poincaré’s hierarchical conception 
involves his characteristic perspective on the problem of absolute space and the 
relativity of motion explained in his discussion of the next lower level in the hierarchy: 
(classical) mechanics. Poincaré’s key idea is that what he calls the (physical) “law 
of relativity” rests squarely on the “relativity and passivity of space” and therefore 
reflects the circumstance, essential to free mobility, that the space constructed from 
our experience of bodily displacements is both homogeneous and isotropic: all points 
in space, and all directions through any given point, are, necessarily, geometrically 
equivalent.11 Thus, Poincaré’s conception of the relativity of motion depends 

11 The “law of relativity” is first introduced in chapter V, “Experience and Geometry,” of La 
Science et l’Hypothèse (1902, p. 96, 1913b, p. 83): “The laws of the phenomena which will happen 
[in a material system of bodies] will depend on the state of these bodies and their mutual distances; 
but, because of the relativity and passivity of space, they will not depend on the absolute position 
and orientation of this system. In other words, the state of the bodies and their mutual distances 
will depend only on the state of the same bodies and their mutual distances at the initial instant, 
but they will not depend at all on the absolute initial position of the system and its absolute initial 
orientation. This is what I shall call, for the sake of brevity, the law of relativity.” Moreover, “in 
order fully to satisfy the mind,” Poincaré continues, the phenomena in question should also be 
entirely independent of “the velocities of translation and rotation of the system, that is to say, the 
velocities with which its absolute position and orientation vary” (1902, p. 98, 1913b, p. 85). Thus, 
because of “the relativity and passivity of space,” the absolute position or orientation of a system 
of bodies in space can have no physical effect whatsoever, and neither can any change (velocity) of 
such absolute position or orientation. In emphasizing that Poincaré’s treatment of the relativity 
of motion rests squarely on his philosophy of space and geometry, I am in very substantial agreement 
with the excellent discussion in DiSalle (2006, section 3.7).
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entirely on his philosophy of geometry, and this is especially significant, from our 
present point of view, because Poincaré’s ideas on the relativity of motion were also 
inextricably entangled with the deep problems then afflicting the electrodynamics 
of moving bodies that were eventually solved (according to our current understanding) 
by Einstein’s special theory of relativity.

I shall return to Einstein below, but I first want to emphasize that the connection 
Poincaré makes between his philosophy of geometry and the relativity of motion 
represents a continuation of a problematic originally prominent in Kant. Helmholtz, 
as we have seen, transformed Kant’s philosophy of space and geometry, and Ernst 
Mach, among others, participated in a parallel transformation of Kant’s approach to 
the relativity of motion – which finally eventuated in the modern concept of an inertial 
frame of reference.12 Neither Helmholtz nor Mach, however, established any kind 
of conceptual connection between the foundations of geometry and the relativity of 
motion – which, at the time, appeared to be entirely independent of one another. Yet it 
was an especially central feature of Kant’s original approach to transcendental 
philosophy that the two were in fact closely connected. While Kant’s answer to the 
question “how is pure mathematics possible?” essentially involved his distinctive 
perspective on Euclidean constructive operations, his answer to the question “how 
is pure natural science possible” involved an analogous constructive procedure by 
which Newton, from Kant’s point of view, arrived at successive approximations to 
“absolute space” via a definite sequence of rule-governed operations starting with our 
parochial perspective here on earth and then proceeding to the center of mass of the 
solar system, the center of mass of the Milky Way galaxy, the center of mass of a system 
of such galaxies, and so on ad infinitum.13 Indeed, the way in which Kant thereby 
established a connection between the problem of space and geometry and the problem 
of the relativity of motion was intimately connected, in turn, with both the overarching 
conception of the relationship between sensibility and understanding that frames 
his transcendental method and his characteristic perspective, more generally, on the 
relationship between constitutive and regulative transcendental principles.14

Now it was Mach, as I have suggested, who first forged a connection between Kant’s 
original solution to the problem of “absolute space” and the late nineteenth-century 
solution based on the concept of an inertial frame of reference.15 And it is clear, 

12 For the nineteenth-century development of the concept of an inertial frame see DiSalle (1988, 
1991); for Mach’s place in this development see DiSalle (2002).
13 Kant develops this interpretation of “absolute space” in his Metaphysische Anfangsgründe der 
Naturwissenschaft (1786), published between the first (1781) and second (1787) editions of the 
Critique of Pure Reason. For details see Friedman (1992, chapters 3 and 4), and also the 
Introduction to my (2004) translation of Kant’s work.
14 In particular, “absolute space,” for Kant, is a regulative idea of reason, defined by the forever 
unreachable “center of gravity of all matter” which we can only successively approximate but 
never actually attain.
15 Kant’s construction of “absolute space,” from a modern point of view, yields better and better 
approximations to a cosmic inertial frame of reference defined by the “center of gravity of all matter.” 
Such a cosmic frame, in which the fixed starts are necessarily at rest, also counts as a surrogate for 
Newtonian “absolute space” in Mach’s treatment: for details see again DiSalle (2002).
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moreover, that Poincaré was familiar with this late nineteenth-century solution as well. 
However, it is also clear that Poincaré’s attempt to base his discussion of the relativity 
of motion on his philosophy of geometry runs into serious difficulties at precisely 
this point; for Poincaré is here forced to distinguish his “law of relativity” from 
what he calls the “principle of relative motion.” The latter applies only to inertial 
frames of reference, moving uniformly and rectilinearly with respect to one another, 
while the latter applies, as well, to non-inertial frames of reference in a state of 
uniform rotation: it follows from the “relativity and passivity” of space, for 
Poincaré, that uniform rotations of our coordinate axes should be just as irrelevant 
to the motions of a physical system as uniform translations. Therefore, the full “law 
of relativity,” as Poincaré says, “ought to impose itself upon us with the same force” 
as does the more restricted “principle of relative motion.” Poincaré must also admit, 
however, that the more extended “law of relativity” does not appear to be in accordance 
with our experiments (e.g., Newton’s famous rotating bucket experiment).16

It is for this reason that Einstein’s appeal to what he calls the “principle of 
relativity” in his 1905 paper on special relativity is entirely independent of Poincaré’s 
“law of relativity,” and it is also independent, accordingly, of Poincaré’s “conventionalist” 
philosophy of geometry. Einstein’s principle is limited, from the beginning, to inertial 
frames of reference (moving relative to one another with constant velocity and no 
rotation), and his concern is rather to apply this (limited) principle of relativity to both 
electro-magnetic and mechanical phenomena. Thus, in particular, whereas Poincaré’s 
“law of relativity” involves very strong a priori motivations deriving from his philosophy 
of geometry (based on the “relativity and passivity of space”), Einstein’s “principle of 
relativity” rests on the emerging experimental evidence suggesting that electro-magnetic 
and optical phenomena do not in fact distinguish one inertial frame from another. 
Einstein “conjectures” that this experimentally suggested law holds rigorously (and for 
all orders), and he proposes to “elevate” it to the status of a presupposition or postulate 
upon which a consistent electrodynamics of moving bodies may then be erected:

16 Poincaré formulates “the principle of relative motion” in chapter VII, “Relative Motion and 
Absolute Motion,” of La Science et l’Hypothèse (1902, p. 135, 1913b, p. 107): “The motion of any 
system whatsoever must obey the same laws, whether it be referred to fixed axes, or to movable 
axes transported by a rectilinear and uniform motion. This is the principle of relative motion, 
which imposes itself upon us for two reasons: first, the most common experience confirms it, and 
second, the contrary hypothesis is singularly repugnant to the mind.” This, of course, is the principle 
of what we now call Galilean relativity, which was originally formulated by Newton as Corollary 
V to the Laws of Motion, and then played a central role in the recent literature on inertial frames 
of reference (see the references cited in note 12 above). However, as Poincaré is well aware, such 
Galilean relativity holds only for (uniform) rectilinear motions and does not extend, therefore, to 
the case of (uniform) rotational motion Poincaré also wishes to subsume under his “law of relativity.” 
Nevertheless, Poincaré says, “it seems that [the principle of relative motion] ought to impose itself upon 
us with the same force, if the motion is varied, or at least if it reduces to a uniform rotation” (1902, 
pp. 136–137, 1913b, p. 108). Thus, Poincaré’s a priori commitment to the law of relativity, derived 
from the homogeneity and isotropy of space, stands in prima facie contradiction with the well-known 
experimental limitations of the principle of relative motion. (Poincaré presents a sophisticated analysis 
of this apparent contradiction in the following discussion, which I shall have to pass over here.)
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Examples of this sort [the relatively moving conductor and magnet—MF], together with 
the unsuccessful attempts to discover any motion of the earth relative to the “light medium,” 
suggest that the phenomena of electrodynamics as well as mechanics possess no properties 
corresponding to the idea of absolute rest. They suggest rather that, as has already been 
shown to the first order of small quantities, the same laws of electrodynamics and optics 
will be valid for all frames of reference for which the equations of mechanics are valid. We 
will elevate [erheben] this conjecture (whose content will be called the “principle of relativity” 
in what follows) to the status of a postulate [Voraussetzung], and also introduce another 
postulate, which is only apparently irreconcilable with it, namely, that light is always 
propagated in empty space with a definite velocity c which is independent of the state of 
motion of the emitting body. These two postulates suffice for attaining a simple and consistent 
theory of the electrodynamics of moving bodies based on Maxwell’s theory for stationary 
bodies. (1905, pp. 891–892, 1923, pp. 37–38)

Hence, Einstein’s understanding of the principle of relativity is also entirely 
independent of Poincaré’s carefully constructed hierarchy of the mathematical 
sciences, and it is for precisely this reason, I suggest, that Poincaré himself could 
never accept Einstein’s theory.17

Nevertheless, it appears overwhelmingly likely that, although Einstein did not 
embrace Poincaré’s “conventionalist” philosophy of geometry, Einstein’s use of the 
principle of relativity was explicitly inspired by Poincaré’s more general methodology 
described in La Science et l’Hypothèse – according to which the fundamental principles 
of mechanics, in particular, are “conventions or definitions in disguise” arising from 
“experimental laws” that “have been elevated into principles to which our mind attributes 
an absolute value.”18 In Einstein’s case, the experimental law in question comprises the 

17 In his 1912 lecture on “Space and Geometry,” appearing in Poincaré (1913a), Poincaré explicitly 
considers what we now call the four-dimensional geometry of Minkowski space–time, and he 
clearly states his preference for an alternative formulation of the Lorentzian type – where, in 
particular, both the Newtonian laws of mechanics and “the relativity and passivity of space” retain 
a foundational role. Thus, from a modern point of view, while Poincaré’s most fundamental 
“law of relativity” is a purely geometrical principle, expressing the necessary symmetries of 
three-dimensional (homogeneous) space, Einstein’s “principle of relativity” expresses the symmetry 
or invariance properties of the laws of Maxwell–Lorentz electrodynamics – which we now take to 
be the symmetries of Minkowski space–time. The central problem with Poincaré’s hierarchy, from 
this point of view, is that it makes the three-dimensional geometry of space prior to the four-dimensional 
geometry of space–time: compare again DiSalle (2006, section 3.7) for a similar diagnosis.
18 This idea is stated as a key part of Poincaré’s “General Conclusions” to his discussion of (classical) 
mechanics (1902, p. 165, 1913b, p. 125): “[The fundamental principles of mechanics] are conventions 
or definitions in disguise. Yet they are drawn from experimental laws; these laws, so to speak, have 
been elevated [érigées] into principles to which our mind attributes an absolute value.” Later, in 
Geometrie und Erfahrung (1921), Einstein explicitly uses the language of “elevation” [erheben] 
in connection with precisely Poincaré’s “conventionalism” (1921, p. 8, 1923, p. 35): “Geometry 
(G) [according to Poincaré’s standpoint] asserts nothing about the behavior of actual things, but 
only geometry together with the totality (P) of physical laws. We can say, symbolically, that only 
the sum (G) + (P) is subject to the control of experience. So (G) can be chosen arbitrarily, and also 
parts of (P); all of these laws are conventions. In order to avoid contradictions it is only necessary 
to choose the remainder of (P) in such a way that (G) and the total (P) together do justice to experience. 
On this conception axiomatic geometry and the part of the laws of nature that have been elevated 
[erhobene] to conventions appear as epistemologically of equal status.” (I shall return to Geometrie 
und Erfahrung below.) To the best of my knowledge, this striking language in Einstein’s 1905 
paper (together with its reappearance in 1921) has not been previously noted in the literature.
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recent results in electrodynamics and optics, and Einstein now proposes to “elevate” 
both the principle of relativity and the light principle (which together imply that the 
velocity of light is invariant in all inertial frames) to the status of “presuppositions” or 
“postulates.” These two postulates together then allow us to “stipulate” a new “definition 
of simultaneity” (based on the assumed invariance of the velocity of light) implying 
a radical revision of the classical kinematics of space, time, and motion. In particular, 
whereas the fundamental kinematical structure of an inertial frame of reference, in 
classical mechanics, is defined by the Newtonian laws of motion, (a revised version of) 
this same structure, in Einstein’s theory, is rather defined by his two postulates.19

A central contention of Kant’s original version of transcendental philosophy, as 
we know, is that the Newtonian laws of motion are not mere empirical laws but a 
priori constitutive principles on the basis of which alone the Newtonian concepts of 
space, time, and motion can then have empirical application and meaning. What we 
have just seen is that Einstein’s two fundamental “presuppositions” or “postulates” play 
a precisely parallel role in the context of special relativity. But we have also seen 
significantly more. For Poincaré’s conception of how a mere empirical law can be 
“elevated” to the status of a “convention or definition in disguise” is a continuation, in turn, 
of Kant’s original conception of the constitutive a priori. Whereas Helmholtz’s principle 
of free mobility generalized and extended Kant’s original theory of geometrical 
construction within our “subjective” and “necessary form of external intuition,” Poincaré’s 
idea that specifically Euclidean geometry is then imposed on this form by a “convention 
or definition in disguise” represents an extension or continuation of Helmholtz’s 
conception. In particular, specifically Euclidean geometry is applied to our experience 
by precisely such a process of “elevation,” in which the merely empirical fact that 
this geometry governs, very roughly and approximately, our actual perceptual experience 
of bodily displacements gives rise to a precise mathematical framework within 
which alone our properly physical theories can subsequently be formulated.20

This same process of “elevation,” in Einstein’s hands, then makes it clear how an 
extension or continuation of Kant’s original conception can also accommodate new and 
surprising empirical facts – in this case, the very surprising empirical discovery (to one 

19 The crucial point, in this connection, is that Newton’s third law – the equality of action and reaction 
– implicitly defines the relation of absolute simultaneity in a classical inertial frame, in so far as it 
allows us to coordinate action-reaction pairs related by the Newtonian law of (instantaneously propa-
gated) gravitation. Einstein’s two postulates take over precisely this role in the case of his new, 
relativized relation of simultaneity defined by (continuously propagated) electro-magnetic processes.
20 Euclidean geometry is singled out, for Poincaré, in that it is both mathematically simplest and 
very naturally corresponds – roughly and approximately – to our pre-scientific experience of bodily 
displacements. Just as Helmholtz’s conception, as I have suggested, is the minimal extension of 
Kant’s original conception consistent with the discovery of non-Euclidean geometries (compare 
note 8 above), Poincaré’s conception is the minimal extension of Helmholtz’s consistent with the 
more sophisticated group-theoretic version of the principle of free mobility due to Sophus Lie, 
the new perspective on the relativity of motion due to the modern concept of an inertial frame, 
and, most importantly, the apparently paradoxical new situation in electrodynamics arising in 
connection with precisely this relativity of motion – where, in particular, Poincaré’s hierarchical 
conception of the mathematical sciences allows him to retain the foundational role of both 
Euclidean spatial geometry and the laws of Newtonian mechanics in the face of what we now call 
Lorentzian (as opposed to Galilean) relativity (compare note 17 above).
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or another degree of approximation) that light has the same constant velocity in every 
inertial frame. It now turns out, in particular, that we can not only impose already familiar 
and accepted mathematical frameworks (Euclidean geometry) on our rough and approxi-
mate perceptual experience, but, in appropriate circumstances, we can also impose 
entirely unfamiliar ones (the kinematical framework of special relativity). Einstein’s 
creation of special relativity, from this point of view, thus represents the very first instan-
tiation of a relativized and dynamical conception of the a priori – which, in virtue of 
precisely its historical origins, has a legitimate claim to be considered as genuinely con-
stitutive in the transcendental sense. And what vindicates this claim, accordingly, is a 
reconceived version of transcendental philosophy where precisely the kind of integrated 
intellectual history I have been trying to exemplify takes the place of Kant’s original 
transcendental faculty psychology: in particular, that the “inner logic” of the successive 
intellectual situations in question proceeds against the background of, and explicitly in 
light of, Kant’s original theory is what makes this enterprise properly “transcendental.”

Yet Einstein’s creation of the general theory of relativity in 1915 involved an even 
more striking engagement with Poincaré’s “conventionalist” methodology, which, I 
contend, makes the transcendentally constitutive role of this theory’s fundamental 
postulates (the light principle and the principle of equivalence) even more evident.

The first point to make, in this connection, is that the principle of equivalence 
(together with the light principle) plays the same role in the context of the general 
theory that Einstein’s two fundamental “presuppositions” or “postulates” played in 
the context of the special theory: namely, they define a new inertial-kinematical structure 
for describing space, time, and motion. Because Newtonian gravitation theory involves 
an instantaneous action at a distance (and therefore absolute simultaneity: compare 
note 18 above), it was necessary after special relativity to develop a new theory of 
gravitation where the interactions in question propagate with the velocity of light. 
And Einstein solved this problem, via the principle of equivalence, by defining a 
new inertial-kinematical structure wherein the freely falling trajectories in a gravi-
tational field replace the inertial trajectories described by free particles affected by 
no forces at all. The principle of equivalence, in this sense, replaces the classical 
law of inertia holding in both Newtonian mechanics and special relativity. But the 
principle of equivalence itself rests on a well-known empirical fact: that gravitational 
and inertial mass are equal, so that all bodies, regardless of their mass, fall with 
exactly the same acceleration in a gravitational field. In using the principle of 
equivalence to define a new inertial-kinematical structure, therefore, Einstein has 
“elevated” this merely empirical fact (recently verified to a quite high degree of 
approximation by Lorand von Eötvös) to the status of a “convention or definition 
in disguise” – just as he had earlier undertaken a parallel “elevation” in the case of 
the new concept of simultaneity introduced by the special theory.21

21 Friedman (2001, pp. 86–91) develops more fully the parallel between these two cases of “elevating” 
a mere empirical fact to the status of a (relativized) a priori principle by first examining the 
relationship between the invariance of the velocity of light (as recently verified in the Michelson–
Morley experiment) and Einstein’s new definition of simultaneity, and then the relationship 
between the equality of gravitational and inertial mass (as recently verified in the Eötvös experi-
ments) and the principle of equivalence.



264 M. Friedman

Nevertheless, Einstein did not reach this understanding of the principle of equivalence 
all at once. He first operated, instead, within an essentially three-dimensional under-
standing of special relativity, and he proceeded to develop relativistically acceptable 
models of the gravitational field by considering the inertial forces (like centrifugal 
and Coriolis forces) arising in non-inertial frames of reference within this framework.22 
It was in precisely this context, in particular, that Einstein came upon the example 
of the uniformly rotating frame (the rotating disk), and it is at this point (and only at 
this point) that he then arrived at the conclusion that the gravitational field may be 
represented by a non-Euclidean geometry. This use of non-Euclidean geometry, 
however, was essentially three-dimensional, limited to purely spatial geometry, and 
Einstein did not arrive at the idea of a four-dimensional non-Euclidean geometry 
– where space-time geodesics represent freely falling trajectories affected only by 
gravitation – until he had generalized his conception to what we now call the 
four-dimensional (semi-)Riemannian geometries of variable curvature.23

It was in precisely the context of this line of thought, finally, that Einstein found 
that he now had explicitly to oppose Poincaré’s “conventionalist” philosophy of 
geometry. Yet Einstein’s argument – as described in Geometrie und Erfahrung (1921) 
– was far from a simple rejection of Poincaré’s methodology in favor of a straight-
forward “empiricism.”24 For Einstein also famously says, in the same work, that “sub 
specie aeterni” Poincaré is actually correct – so that, in particular, Einstein’s reliance 
on a Helmholtzian conception of “practically rigid bodies” is here merely provisional. 
I have suggested, therefore, that we can best understand Einstein’s procedure as one 
of delicately situating himself between Helmholtz and Poincaré. Whereas Einstein 
had earlier followed Poincaré’s general “conventionalist” methodology in “elevating” 
the principle of relativity (together with the light principle) to the status of a 
“presupposition” or “postulate,” he here follows Helmholtz’s “empiricism” in rejecting 
Poincaré’s more specific philosophy of geometry in favor of “practically rigid bodies.”25 

22 See Norton (1985) (1989) for the details of Einstein’s early applications of the principle of 
equivalence.
23 I discuss at length the crucial importance of the rotating disk example in the development of 
Einstein’s thought – following Stachel (1980) (1989) – in Friedman (2001, 2002).
24 Compare note 18 above; and again, for a detailed analysis of Geometrie und Erfahrung, against 
the background of both Helmholtz and Poincaré, see Friedman (2001, 2002).
25 Einstein does not explicitly mention Helmholtz in Geometrie und Erfahrung. However, in a 
closely related article on “Non-Euclidean Geometry and Physics,” Einstein makes it perfectly 
clear that the opposition he has in mind is precisely that between Helmholtz and Poincaré (1925, 
pp. 18–19): “Either one accepts that the ‘body’ of geometry is realized in principle by the solid 
bodies of nature, if only certain prescriptions are maintained regarding temperature, mechanical 
stress, and so on; this is the standpoint of the practicing physicist. Then a natural object corresponds 
to the ‘interval’ of geometry, and all propositions of geometry thereby attain the character of assertions 
about real bodies. This standpoint was represented especially clearly by Helmholtz, and one can 
add that without it establishing the [general—MF] theory of relativity would have been practically 
impossible. Or, one denies in principle the existence of objects that correspond to the fundamental 
concepts of geometry. Then geometry alone contains no assertions about objects of reality, but 
only geometry together with physics. This standpoint, which may be more perfect for the systematic
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It does not follow, however, that Einstein is also rejecting his earlier embrace of 
Poincaré’s general “conventionalist” methodology. Indeed, Einstein had already 
side-stepped Poincaré’s philosophy of geometry in the case of special relativity, and 
for essentially the same reason he explicitly opposes it here: Poincaré’s rigid 
hierarchy of the sciences, in both cases, stands in the way of the radical new innovations 
Einstein himself proposes to introduce.26

But why was it necessary, after all, for Einstein to engage in this delicate dance 
between Helmholtz and Poincaré? The crucial point is that Einstein thereby arrived 
at a radically new conception of the relationship between the foundations of (physical) 
geometry and the relativity of space and motion. These two problems, as we have seen, 
were closely connected in Kant, but they then split apart and were pursued inde-
pendently in Helmholtz and Mach (compare the paragraph to which note 11 above 
is appended). In Poincaré, as we have also seen, the two were perceptively reconnected 
once again, in so far as Poincaré’s hierarchical conception of the mathematical 
sciences incorporated both a modification of Helmholtz’s philosophy of geometry 
and a serious engagement with the late nineteenth-century concept of inertial frame 
(compare note 15 above, together with the paragraph to which it is appended, and 
also note 19 above). Indeed, it is for precisely this reason, as we now see, that 
Poincaré’s scientific epistemology was so important to Einstein. Einstein could not 
simply rest content with Helmholtz’s “empiricist” conception of geometry, because 
the most important problem with which he was now faced was to connect the foun-
dations of geometry with the relativity of motion. But Einstein could not rest content 
with Poincaré’s conception either, because his new models of gravitation had 
suggested that geometry has genuine physical content.

Einstein’s radically new way of reconfiguring the relationship between the 
foundations of geometry and the relativity of motion therefore represents a natural 
(but also entirely unexpected) extension or continuation of the same conception of 
dynamical and relativized constitutive a priori principles he had first instantiated in 
the creation of special relativity (compare note 20 above, together with the 
paragraph to which it is appended and the following paragraph). Just as he had 

presentation of a completed physics, was represented especially clearly by Poincaré. On this 
standpoint the total content of geometry is conventional; which geometry is to be preferred 
depends on how ‘simple’ a physics can, by its use, be established in agreement with experience.” 
Ryckman (2005, section 3.3) emphasizes the importance of this passage in relation to the earlier 
argument of Geometrie und Erfahrung.
26 See note 17 above, together with the paragraph to which it is appended. As I suggested, Einstein 
could not embrace Poincaré’s philosophy of geometry even in 1905, since it privileges a priori the 
three-dimensional geometry of space over the de facto symmetries of the laws of motion (which, 
on our current understanding, express the four-dimensional geometrical symmetries of space–
time). Einstein’s divergence from Poincaré on this point is even stronger in general relativity; for, 
not only do we now use non-Euclidean geometries to describe both space and space–time, but we 
have also definitively given up (in both cases) the homogeneity and isotropy (constant curvature) 
of the underlying geometry. Einstein thereby ultimately arrived at a radically new conception of 
physical geometry envisioned by neither Helmholtz nor Poincaré (compare again note 8 above): 
for details see again Friedman (2002).
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earlier shown how an extension or continuation of Kant’s original conception could 
accommodate new and surprising empirical facts (the discovery of the invariance 
of the velocity of light), Einstein here shows how a further extension of this same 
tradition can do something very similar in facilitating, for the first time, the application 
of a non-Euclidean geometry to nature. In this case, however, it is not the relevant 
empirical fact (the well-known equality of gravitational and inertial mass) that is 
surprising, but the entirely unforeseen connection between this fact and the new 
geometry. And what makes this connection itself possible, for Einstein, is precisely 
the principle of equivalence – which thereby constitutively frames the resulting 
physical space-time geometry of general relativity in just the same sense that Einstein’s 
two fundamental “presuppositions” or “postulates” had earlier constitutively framed 
his mathematical description of the electrodynamics of moving bodies in special 
relativity (within what we now call the geometry of Minkowski space–time). 
Whereas the particular geometry in a given general relativistic space–time is now 
determined entirely empirically (by the distribution of mass and energy in accordance 
with Einstein’s field equation), the principle of equivalence itself is not empirical 
in this sense. This principle is instead presupposed – as a transcendentally constitutive 
condition – for any such geometrical description of space–time to have genuine 
empirical meaning in the first place.

The historicized version of transcendental philosophy I am attempting to exemplify 
therefore sheds striking new light, I believe, on the truly remarkable depth and fruitful-
ness of Kant’s original version. Kant’s particular way of establishing a connection 
between the foundations of geometry and the relativity of motion – which, as we 
have seen, lies at the heart of his transcendental method (compare the paragraph to 
which note 6 above is appended, together with the following paragraph) – has not 
only lead, through the intervening philosophical and scientific work of Helmholtz, 
Mach, and Poincaré, to a new conception of the relativized a priori first instantiated 
in Einstein’s theories, it has also led, through this same tradition, to a radically new 
reconfiguration of the connection between geometry and physics in the general 
theory of relativity itself. There can be no question, of course, of Kant having 
“anticipated” this theory in any way. The point, rather, is that Kant’s own conception 
of the relationship between geometry and physics (which was limited, of necessity, 
to Euclidean geometry and Newtonian physics) then set in motion a remarkable 
series of successive reconceptualizations of this relationship (in light of profound 
discoveries in both pure mathematics and the empirical basis of mathematical physics) 
that finally eventuated in Einstein’s theory.
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